# Chaining in Biomagnetic Nanoparticles

Karen L. Livesey and Robert E. Camley



## 1) Biomedical applications of magnetic nanoparticles (MNPs)







# 2) Magnetic properties change due to chaining



Eg. Linear aggregates have reduced transverse proton relaxation rates

S. L. Saville et al. Nanoscale **5**, 2152 (2013)

#### 4) Results 20 nm Fe<sub>3</sub>O<sub>4</sub> particles

Mean separation changes magnetization alized magnetization 4x4x20 particle 0.5 chain 2 nm separation -0.5**-32** nm between neighbors 0.02 0.010.03 Magnetic induction (T) Increasing separation  $\rightarrow$  decreasing coercive field

Future work: Comparison to experiments Field cooled simulations Influence of disorder How do chains form?

## 3) Monte Carlo calculation

Choose random magnetization directions M for each nanoparticle

1. Choose a particle, change M, calculate the energy change:

$$\Delta E = -(M_{new} - M_{old}) \cdot H_{total}$$

2. Metropolis algorithm accept change with probability that depends on temperature:

fields from all the other particles

Applied field plus dipole

min(1,  $e^{(-\Delta E/kT)}$ )

Repeat steps 1 & 2

Aspect ratio of the chain is important



Superparamagnetic behavior can be lost due to interparticle dipole-dipole interactions

Multiple chains have the same behavior as single chains, provided they are separated by roughly 100 nm